Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Artificial Axon is a unique synthetic system, based on biomolecular components, which supports action potentials. Here we consider, theoretically, the corresponding space extended system, and discuss the occurrence of solitary waves, or kinks. Such structures are indeed observed in living systems. In contrast to action potentials, stationary kinks are possible. We point out an analogy with the interface separating two condensed matter phases, though our kinks are always non-equilibrium, dissipative structures, even when stationary.more » « less
-
Abstract The Artificial Axon is a unique synthetic system, based on biomolecular components, which supports action potentials. Here we examine, experimentally and theoretically, the properties of the threshold for firing in this system. As in real neurons, this threshold corresponds to the critical point of a saddle-node bifurcation. We measure the delay time for firing as a function of the distance to threshold, recovering the expected scaling exponent of −1/2. We introduce a minimal model of the Morris-Lecar type, validate it on the experiments, and use it to extend analytical results obtained in the limit of ‘fast’ ion channel dynamics. In particular, we discuss the dependence of the firing threshold on the number of channels. The Artificial Axon is a simplified system, an Ur-neuron, relying on only one ion channel species for functioning. Nonetheless, universal properties such as the action potential behavior near threshold are the same as in real neurons. Thus we may think of the Artificial Axon as a cell-free breadboard for electrophysiology research.more » « less
-
This article addresses why biomaterials are a growing part of materials science. We consider two areas at two different scales. At the nanometer scale, enzymes are heterogeneous nanoparticles of extraordinary deformability; this property allows us to view biomolecules informed by concepts of materials science and nonlinear physics. A degree of universality in the mechanical behavior of the molecules appears in the ubiquitous softening transitions; some results obtained dynamically by nanorheology, and others obtained in equilibrium experiments through the method of the DNA springs are summarized. These soft molecules represent an opportunity for studies of dissipation at the atomic scale. At the mesoscopic scale, composite functional materials with biological components hold promise for applications such as low power, chemically driven, biodegradable devices. A concrete example, and a program for the future, is the artificial axon. It is a synthetic structure that supports action potentials based on the same physical mechanism as the voltage spikes in nerve cells. A network of such axons, which is yet to come, would constitute an artificial brain. Beyond device applications, the focus here is on the basic science, namely, a constructivist approach to cybernetics, algorithmic mathematics, and the brain.more » « less
An official website of the United States government
